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We show that the self-organized single-helical-axis (SHAx) and double-helical-axis (DAx) states
in reversed field pinches can be reproduced in a minimally constrained equilibrium model using only
five parameters. This is a significant reduction on previous representations of the SHAx which have
required an infinite number of constraints. The DAx state, which has a non-trivial topology, has not
been previously reproduced using an equilibrium model that preserves this topological structure.
We show that both states are a consequence of transport barrier formation in the plasma core, in
agreement with experimental results.
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A major goal of the theory of complex physical systems
is to find relatively simple organizing principles that op-
erate when systems are strongly driven. A famous early
example of such a universal principle is the Taylor relax-
ation principle [1], which postulates that a plasma tends
to minimize its total magnetic energy subject only to the
constraints of conservation of global magnetic flux and
global magnetic helicity. This principle has been success-
ful in describing the classical behavior of the core region
of Reversed Field Pinch (RFP) experiments which con-
tained many magnetohydrodynamic (MHD) modes res-
onating on different plasma layers. These modes formed
overlapping magnetic islands and resulted in a chaotic
field region, extending over most of the plasma volume
[2]. The consequent destruction of magnetic surfaces led
to modest confinement, and was thought to prevent fu-
sion power development with the RFP.

This classical paradigm of the RFP as a chaotic
plasma with modest confinement properties has been
challenged in recent years with the observation of the
high-confinement quasi-single-helicity (QSH) regime [3,
4]. The transition to the QSH regime occurs as the
plasma current is increased (>1MA), and a single domi-
nant helical mode arises spontaneously. A second (he-
lical) magnetic axis forms associated with this helical
mode and this state is known as the double-axis state
(DAx) [5]. As the current is increased further a topologi-
cal change in this magnetic configuration is observed: the
main magnetic axis and the second axis of the DAx state
merge, forming a helical plasma column despite the ax-
isymmetric plasma boundary. This is the single-helical-
axis (SHAx) state [6] which has recently been observed
in RFX-mod [7, 8] and is associated with strong electron
transport barriers and significantly improved plasma con-
finement.

As the DAx and SHAx states are formed by a self-
organized process, they should be describable in terms
of a small number of parameters. Taylor’s theory was
successful in describing the classical chaotic regime in

the core of the RFP with only two parameters, however
it is unable to describe the self-organized states in the
QSH regime because although it has a helical solution
for sufficiently high magnetic helicity [1], the helical pitch
of this solution is opposite to that of the observed QSH
states [3].

The SHAx state in the QSH regime has been repro-
duced using the ideal MHD equilibrium framework as-
suming continuously nested magnetic flux surfaces [9]
(see Figure 1(a)–(d)). The continuously nested flux sur-
face assumption typically used with ideal MHD requires
the specification of the enclosed toroidal and poloidal
fluxes as a function of the magnetic flux surface. These
continuous flux functions are an infinite number of con-
straints on the plasma equilibrium, and are therefore not
a natural description of the self-organized QSH regime.
The continuously nested flux surface assumption also pre-
vents the description of non-trivial magnetic structure
such as islands and chaotic regions. These constraints
prevent this equilibrium framework from describing the
DAx state, which has two magnetic axes. This Letter
presents the results of a generalization of Taylor’s the-
ory which describes both the SHAx and DAx states in
the QSH regime with a minimum number of free param-
eters. Both states are naturally reproduced as a result
of a single transport barrier in the core of the plasma.
This is in agreement with experimental observations of
an electron transport barrier surrounding the core of the
plasma in the SHAx state [8].

A stable plasma equilibrium is a constrained minimum
of the plasma energy

W =

∫ (
B2

2µ0
+

p

γ − 1

)
d3x, (1)

where B is the magnetic field, µ0 is the permeability of
free space, p is the plasma pressure and γ is the ratio of
specific heats. The plasma states over which W is mini-
mized must be constrained to avoid the trivial B = 0 so-
lution. The traditional approach of ideal MHD is to con-
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FIG. 1. Comparison of the ideal MHD representation of the SHAx state in RFX-mod and the minimal model (MRXMHD)
of this state presented in this work. Figures (a)–(d) show the (poloidal) magnetic flux contours of the ideal MHD plasma
equilibrium at equally spaced toroidal angles covering one period of the helical solution. Figures (e)–(h) show Poincaré plots of
the minimal model at the same toroidal locations as (a)–(d). The thick black lines mark the location of the transport barrier
separating the two plasma volumes. The minimal model corresponds to the s = 0.3 configuration of Figure 3.
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FIG. 2. Five constraints are needed to specify the two-volume
MRXMHD plasma equilibrium: the toroidal flux in each vol-
ume, ψt,i; the poloidal flux in the outer volume, ψp,i; and the
magnetic helicities in each volume, Ki.

sider only states with nested magnetic flux surfaces with
the enclosed toroidal and poloidal fluxes specified as a
function of the magnetic flux surface. This Letter consid-
ers a wider class of plasma equilibria by relaxing the con-
tinuously specified constraints of the traditional equilib-
rium framework to a finite number of discrete constraints.
We apply the MRXMHD framework [10, 11], which is a
generalization of Taylor’s relaxation theory in which the

plasma is partitioned into a finite number of nested re-
gions Ri that independently undergo Taylor-relaxation.
The plasma regions are separated by ideal transport bar-
riers Ii that are also assumed to be magnetic flux sur-
faces (the two-volume case is illustrated in Figure 2). In
the MRXMHD framework plasma equilibria are obtained
by minimizing (1) subject to discrete constraints on the
enclosed magnetic fluxes, magnetic helicity and thermo-
dynamic quantities in each plasma region [12]. The mag-
netic helicity is a topological constraint related to the
Gauss linking number of flux tubes, which is the most
preserved of the ideal MHD invariants in the presence of
small amounts of resistivity [1, 13]. Taylor’s relaxation
theory preserves the magnetic helicity globally through-
out the entire plasma and can be physically interpreted
as the idea that a weakly resistive plasma will evolve to
minimize the plasma energy, but the magnetic field can-
not untangle itself. The MRXMHD framework extends
this idea to include a number of transport barriers par-
titioning the plasma and preventing complete reconnec-
tion. In the MRXMHD framework the magnetic topol-
ogy within each plasma region is completely free; only the
ideal transport barriers are constrained to be magnetic
flux surfaces.

In this Letter we obtain a minimal model of the RFP
QSH regime by taking a traditional equilibrium with as-
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sumed nested flux surfaces and reducing the constraints.
As the ideal transport barriers in MRXMHD are also
magnetic flux surfaces, we select a number of flux surfaces
(zero or one in this Letter) of the ideal MHD equilibrium
to act as those barriers and compute the magnetic flux
and helicity constraints associated with each region from
the ideal MHD solution. We then self-consistently solve
for the plasma equilibrium that minimizes the plasma
energy subject to these constraints. This procedure can-
not increase the plasma energy relative to the ideal MHD
equilibrium because the minimum energy is taken over a
superset of plasma states due to the looser constraints.
As the number of transport barriers in the MRXMHD
solution increases, the solution will approach the ideal
MHD solution [14], but the number of parameters defin-
ing these solutions increases with the number of trans-
port barriers and therefore a natural description of the
QSH regime should have the minimum number of ideal
transport barriers. We show in this Letter that only a
single transport barrier is needed to reproduce the QSH
regime. This is the minimal extension of Taylor’s relax-
ation theory.

The ideal MHD state chosen as the reference solution
in this Letter (see Figure 1(a)–(d)) is a representation of
the QSH state in RFX-mod obtained by Terranova et al.
[9] (Figure 2 of [9]). This solution has an axisymmet-
ric circular cross-section with major radius 2m, and mi-
nor radius 0.448m. As the QSH regime is a high-current
regime the effect of pressure can be negligible, and this
is the case for the ideal MHD equilibrium presented in
Figure 1(a)–(d). Zero pressure has been assumed in this
ideal MHD equilibrium and will be assumed in the re-
mainder of this Letter.

The smallest number of constraints possible in the
MRXMHD model is when the entire plasma is taken as
a single volume without any transport barriers partition-
ing it. In this case only two constraints specify the equi-
librium: the enclosed toroidal flux ψt and the magnetic
helicity K. This single plasma-region case is Taylor’s re-
laxation theory [1]. The solution for this configuration is
axisymmetric because the magnetic helicity is 40% below
the bifurcation point where the solution becomes helical.
At least one transport barrier is therefore required to re-
produce the QSH regime, which increases the number of
constraints to five (see Figure 2): the toroidal fluxes in
each volume, the helicity in each volume, and the poloidal
flux in the outer volume. The poloidal flux is an addi-
tional constraint required in the outer annular-toroidal
region due to its different topology compared to the in-
ner toroidal region.

To model the QSH regime with a single transport bar-
rier a flux surface of the ideal MHD equilibrium must
be chosen to act as that barrier. We perform a param-
eter scan over the possible choices parameterized by s,
the normalized poloidal flux enclosed by the transport
barrier (0 ≤ s ≤ 1). Figure 3 depicts the minimum en-
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FIG. 3. Plot of the plasma energy for different plasma equi-
libria as a function of the magnetic flux surface chosen as the
transport barrier in the MRXMHD model.

ergy for each of these configurations (as computed by
the Stepped Pressure Equilibrium Code [15]) and com-
pares them to the single volume solution (no transport
barrier; Taylor’s relaxation theory) and the continuously
nested flux surface solution (ideal MHD). Also plotted
are the minimum energies obtained for the same con-
figurations but artificially forcing the solution to be ax-
isymmetric. As the ideal MHD equilibria have a super-
set of the constraints of the MRXMHD equilibria, the
energies of the ideal MHD are an upper bound for the
corresponding MRXMHD equilibria. The single-volume
solution has fewer constraints than the other equilibria
and is a lower bound for the energies of the other so-
lutions. As s → 0 the two-volume solutions approach
the energy of the single-volume solution as the transport
barrier contracts to a point. The trend towards this be-
havior can be seen near s = 0 in Figure 3, however the
transition is rapid in s because s ∼ r2 near the origin.

In Figure 3, for low s the difference between the en-
ergies of the single transport barrier solutions and the
corresponding solutions with enforced axisymmetry indi-
cates that a non-axisymmetric solution develops associ-
ated with a transport barrier in the core region. This
non-axisymmetric structure is helical in nature as shown
in the Poincaré plots in Figure 1(e)–(h), which have the
same qualitative structure as the ideal MHD solution
with continuous flux surfaces in Figure 1(a)–(d) with the
exception of additional topological structure such as is-
lands and chaotic regions that cannot be represented in
the ideal MHD solution. The similarity between these
two figures demonstrates that only a single transport
barrier is required to reproduce the self-organized SHAx
state. This is the first time such a nontrivial magnetic
topology has been reproduced non-perturbatively within
a plasma equilibrium description.

Figure 4 illustrates Poincaré plots for a range of trans-
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FIG. 4. Poincaré plots for single-barrier MRXMHD equilibria for different values of s, the ideal MHD flux surface chosen to
act as the transport barrier. These figures have the same scale as in Figure 1.

port barrier locations demonstrating that we can repro-
duce DAx-like solutions in (a) and (b) as well as the
SHAx-like solutions in (c) and (d). The DAx-like solu-
tions are in good agreement with reconstructed Poincaré
plots from the MST device [4] and RFX-mod [16]. As the
transport barrier leaves the plasma core and approaches
the edge, the solution becomes mostly axisymmetric [see
Figure 4(e)] with some small island structure. This sug-
gests that both the QSH regime is correlated to the for-
mation of a transport barrier near the plasma core. The
existence of a transport barrier near the plasma core is
supported by experimental measurements in RFX-mod
[8].

Experimental measurements in RFX-mod [17, 18] show
the temperature profile to be relatively flat in the core.
This has previously been considered [8, 18] as evidence
for small amounts of chaos in the plasma core and the in-
terpretation of flux surfaces in the core as ghost surfaces
[19]. Alternatively as the plasma density is also relatively
flat in the core [17], together these observations suggest
that the pressure may also be constant in the core. Al-
though zero pressure has been assumed in this Letter, the
MRXMHD model predicts a constant pressure in each
plasma region [10], which is consistent with these obser-
vations. A more detailed comparison with experiment
will be necessary to distinguish these two models of the
plasma core.

This Letter has demonstrated a minimal model that is
able to qualitatively reproduce the magnetic structure of
both the self-organized SHAx and DAx states in the QSH
regime of RFPs. Previous recreations of the SHAx state
have required an infinite number of constraints to param-
eterize the model; the model presented in this Letter has
only five: the enclosed toroidal fluxes and helicities in the
inner and outer volumes, and the enclosed poloidal flux
in the outer volume. Fewer constraints are not possible
as there is no model with 3 or 4 constraints, and Taylor’s
relaxation theory which has 2 constraints cannot repro-
duce the QSH regime of RFPs.
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